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TABLE II. irradiations on a ‘thin’ layer of 237-Np deposited and 
sealed between Al foils led to a very complicated 
mixture of y-emitting products, which made impos- 
sible to perform conventional y measurements 
without a suitable radiochemical separation. 

Nuclear reaction Q-value 

(MeV) 

Threshold Coulomb 

(MeV) Barrier 
(MeV) 

23%U&n)235Np -0.91 0.91 

235-U(p,2n)234-Np -8.98 9.02 

235U(p,3n)233-Np -13.90 13.96 

234~U(p,n)234-Np - 2.60 2.61 
234~U(p,2n)233-Np -8.63 8.67 
238-U(p,n)238-Np -0.90 0.90 
238~U@,2n)237-Np -6.33 6.35 
238~U@,3n)236-Np - 13.06 13.12 
238-U@,4n)235-Np - 18.74 18.82 
238-U(p,5n)234-Np -25.70 25.81 
283-U(p,6n)233-Np -31.73 31.86 
235~U(d,n)236-Np 2.54 0.00 
235-U(d,2n)235-Np -3.13 3.16 
235-U(d,3n)234-Np - 10.09 10.18 

235-U(d,4n)233-Np - 16.12 16.26 

234-U(d,n)235-Np 2.14 0.00 

234-U(d,2n)234-Np -4.82 4.87 
234-U(d,3n)233-Np - 10.86 10.95 

237-Np(p,n)237-Pu -1.01 1.01 
237-Np(p,2n)236-Pu - 7.00 7.03 
237-Np(p,3n)235& - 14.32 14.38 
237-Np(d,n)238-Pu 3.71 0.00 

237-Np(d,2n)237Pu -3.23 3.26 

237-Np(d,3n)236-Pu - 9.23 9.31 

237-Np(d,4n)235-Pu - 16.55 16.69 

235-U(a,n)238-Pu - 10.83 11.02 
235-U(o,2n)237& - 17.77 18.08 
235~U(a,3n)236Pu - 23.77 24.18 
235-U(a,4n)235-Pu -31.09 31.62 

234-U(o(,n)237Pu -12.51 12.72 

234~U(o,2n)236Pu - 18.50 18.82 

234~U(o,3n)235-Pu -25.82 26.26 

238-U(a,n)241-Pu - 11.18 11.37 
238-U(Lu,2n)240-Pu - 16.59 16.87 
238-U(a,3n)239-Pu - 23.05 23.43 
238-U(or,4n)238-Pu - 28.66 29.14 
238-U((u,5n)237Pu - 35.60 36.20 
238~U(or,6n)236-Pu -41.60 42.30 

235~U(7,n)237-Pu 2.78 0.00 
235-U(r,2n)236Pu - 3.22 3.26 

235~U(7,3n)235Pu - 10.54 10.67 
235~U(7,4n)234Pu - 16.80 17.01 

238~U(r,n)240Pu 3.96 0.00 

238~U(r,2n)239-Pu - 2.49 2.53 

238-U(r,3n)238-Pu -8.11 8.21 

238-U(r,4n)237& - 15.05 15.24 

238~U(r,Sn)236-Pu -21.05 21.32 
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about the (r,4n) reaction [ 121. At the Milan Cyclo- 
tron Laboratory the employ of the 237-Np(p,n) 
reaction has been considered. In principle, if the 
proton energy is lower than the threshold of the @, 
2n) reaction which leads to the o-emitting 236~Pu, 
the (pp) reaction seems to lead to a 237&r with a 
high radionuclidic purity, higher than that obtained 
via (d,2n) and (o,2n) reactions. Only preliminary 
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The self diffusion coefficients of the ls2Eu3+ ion 
aqueous nitrate solution and the 241Am3+ ion in 
neodymium perchlorate solution are determined by 
the open end capillary method (OCM). The aim of 
this work is as follows: Verification of the Onsager 
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physical or abrasive methods can change in some 
degree treated materials and are not suited for a lot 
of instruments; chemical methods produce large 
quantitites of radioactive wastes which often show 
some difficulties in handling. Both decontamination 
techniques can introduce some irradiation and con- 
tamination hazards for the operators. 

In order to reduce these disadvantages, there is 
arising a certain interest in the use of solid decon- 
taminating agents as easily applicable pastes or gels. 
At C.A.M.E.N. we have used a suspension of a partic- 
ular clay. The basic constituent of these decon- 
taminating media is attapulgite, a widely used materi- 
al utilized to remove resisting dirt present on art- 
works; its aqueous suspensions show high chemical 
inertness and thixotropic and not-newtonian proper- 
ties. 

The present work describes some decontamination 
experiments of materials frequently used in the 
actinides technology, previously contaminated with 
uranyl nitrate and thorium nitrate. This decontamina- 
tion is carried out by attapulgus clay aqueous sus- 
pensions. Samples, cured by B.S. 4247 specification, 
of the following materials, stainless steel AISI 304, 
mild steel UN1 Aq 42, aluminium alloy UN1 P-Al- 
Mg 3.5, lead, polymethyhnetacrylate, polyvinyl- 
chloride, polytetrafluoroethylene, polypropylene, 
have been contaminated with 0.2 ml of 2% solutions 
of uranyl nitrate and thorium nitrate (PH = 3.0) 
respectively. The suspension, obtained on mixing 
attapulgitic clay and water in predetermined propor- 
tions, was laid by a spatula with a lo-12 mm thick- 
ness, corresponding to 1.0-l .2 g cm-?. The samples 
were kept for 48 hours at room temperature; the sus- 
pension dries up and severs spontaneously. A light 
halo eventually remained on the samples and can be 
removed by wiping delicately surfaces with a lightly 
wet flock of cotton. The samples have been measured 
by an alpha scintillator, with ZnS(Ag) detector, 
after contamination and after each decontamination 
process; the efficiency of the instrument was deter- 
mined with uranyl nitrate and thorium nitrate stan- 
dard. 

Results obtained in experiments are reported as 
decontamination factor DF(logarithm), where DF: 

limit law concerning the relative variation of the self 
diffusion coefficient with the ionic strength. Com- 
parison of the behaviour of the europium ion 152Eu* 
with that of the americium ion 241Am3+ from the 
point of view of ionic transport. This work would be 
useful in elucidating the electrolytic behaviour of 
actinide and lanthanide ions, especially with respect 
to ion-ion and ion-solvent interactions under equilib- 
rium and nonequilibrium conditions. 

The data show that there is a similarity in the 
ionic transport processes of the 152Eu3+ and 241Am4c 
ions. 

Diffusion coefficient of lanthanide ion at infinite 
dilution: DFX lo6 cm2 s: 6.10 (ls2Eu3+) [I]. 

Diffusion coefficient of actinide ion at infinite 
dilution: DFX lo6 cm2 s: 6.19 (24’Am3’) [I]. 

The present work shows that the electrostatic 
relaxation effect for ls2Eu3+ in an aqueous solution 
of Eu(NO~)~ is responsible for a relatively important 
variation (20%) in the concentration range 0 to 
10m3 M for the self-diffusion of these ions. 

On the other hand, our results show that the ionic 
transport process for ls2Eu3+ is similar to that for 
24’Am3+ at pH 2.5. Moreover, it may be provisionally 
argued that the Eu3+ ion in solution at pH > 6 has 
essentially the same structure as a tripositive 5f ion. 

1 H. Latrous and J. M’Halla, Radiochem. Radioanal. Let- 
ters, 53 (1) 33-44 (1982); B. Fourest, J. Duplessis and 
F. David, J. Less-Common Met., 92, No. 1, 17 (1983). 
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In the operations connected to the nuclear fuel 
cycle, equipments and surfaces can undergo radiolog- 
ical contamination for accidental causes or conse- 
quently to their use; among radionuclides, Uranium 
and Thorium are often present and in a large amount. 

Protection of the operators requires the removal 
of radioactive substances from the materials involved 
in the working especially in the case of alpha emit- 
ters, whose effects on man are very dangerous. 
Severe limits to the contamination levels are imposed 
in the various countries: generally, alpha acitivity on 
the working surfaces must be below 1.85 Bq cme2. 

Radioactivity elimination current techniques in- 
volve the use of physical and chemical methods. The 

DF= 
activity before decontamination 

activity after decontamination 

In Tables I-II values of logarithm of DF found for 
uranyl nitrate and thorium nitrate for repeated appli- 
cations of attapulgus clay aqueous suspensions are 
reported. 

From the data it appears that: 
- For most of the examined materials a high 

removal has been obtained: more than 95% of the 
initial activity, except for mild steel, where removal 


